What is the trigonometric form of -1+3i?

1 Answer
Feb 20, 2018

The trignometric form is z=sqrt(10)(cos(108.4^@)+isin(108.4^@)), [mod 360^@]

Explanation:

The complex number is

z=-1+3i

The polar form of z=a+ib

is

z=r(costheta+isintheta)

Where,

r=|z|

costheta=a/|z|

sintheta=b/|z|

Here,

|z|=r=sqrt((-1)^2+(3)^2)=sqrt(10)

costheta=-1/sqrt(10)

sintheta=3/sqrt(10)

theta=108.4^@

Therefore,

z=sqrt(10)(cos(108.4^@)+isin(108.4^@)), [mod 360^@]