What is the trigonometric form of 12+4i?

2 Answers
May 19, 2016

12+4i=410(cosα+isinα), where tanα=13

Explanation:

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2.

Hence 12+4i=122+42[cosα+isinα]

= 160[cosα+isinα]

= 410[cosα+isinα],

where cosα=12410=310

and sinα=4410=110

or tanα=110310=13

May 19, 2016

410(cos(0.322)+isin(0.322))

Explanation:

Given a complex number z = x + yi , this can be written in trig. form as.

z=x+yi=r(cosθ+isinθ)

where r=x2+y2

and θ=tan1(yx)

here x = 12 and y = 4

r=122+42=160=410

and θ=tan1(412)0.322 radians or18.43

12+4i=410(cos(0.322)+isin(0.322))or

12+4i=410(cos(18.43)+isin(18.43))