What is the trigonometric form of (-2+10i)(3+3i) ?

1 Answer
Mar 28, 2018

12sqrt(13)(cos(tan^-1(-2/3))+isin(tan^-1(-2/3)))~~43.267(cos(-0.588)+isin(-0.588))

Explanation:

(-2+10i)(3+3i)=-6+30i-6i+30i^2=-36+24i

Trigonometric form: r(isin(theta)+cos(theta))
Rectangular form: a+bi
r=sqrt(a^2+b^2)=sqrt(36^2+24^2)~~43.267
theta=tan^-1(b/a)=tan^-1(24/-36)
=tan^-1(-2/3)~~-0.588 (radians)

12sqrt(13)(cos(tan^-1(-2/3))+isin(tan^-1(-2/3)))