What is the trigonometric form of (2+9i)?

1 Answer
Jan 1, 2016

85(cos(tan1(92))+isin(tan1(92)))

Explanation:

(2+9i)

rcos(θ)=2
rsin(thea)=9

Squaring both and adding

r2cos2(θ)=4
r2sin2(θ)=81

r2cos2(θ)+r2sin2(θ)=4+81
r2(cos2(θ)+sin2(θ))=85
r2=85
r=85

rsin(θ)rcos(θ)=92
tan(θ)=92

θ=tan1(92)

The complex number in trigonometric form is

85(cos(tan1(92))+isin(tan1(92)))