What is the trigonometric form of (2i)(12i)?

1 Answer
May 19, 2016

(2i)(12i)=5i

Explanation:

Let us first write (2i) and (12i) in trigonometric form.

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2.

Hence 2i=22+(1)2[cosα+isinα] or

5eiα, where cosα=25 and sinα=15

12i=12+(2)2[cosβ+isinβ] or

5eiβ, where cosβ=15 and sinβ=25

Hence (2i)(12i)=(5eiα)×(5eiβ)=5ei(α+β)

= 5(cos(α+β)+isin(α+β))

= 5[(cosαcosβsinαsinβ)+i(sinαcosβ+cosαsinβ)]

= 5[(25×1515×25)+i(15×15+25×25)]

= 5[(2525)+i(1545)] = 5×55i=5i