What is the trigonometric form of (3+5i) (3+5i)?

1 Answer
Dec 27, 2015

3+5i = sqrt(34)(cos(tan^(-1)(5/3)) + isin(tan^(-1)(5/3)))3+5i=34(cos(tan1(53))+isin(tan1(53)))

~~ sqrt(34)(cos(59.04^@) + isin(59.04^@))34(cos(59.04)+isin(59.04))

Explanation:

Any complex number z = a+biz=a+bi has a trigonometric form

z = r(cos(theta) + isin(theta))z=r(cos(θ)+isin(θ))

where r = |z| = sqrt(a^2 + b^2)r=|z|=a2+b2 and theta = tan^(-1)(b/a)θ=tan1(ba)

For the given complex number, we have a = 3a=3 and b = 5b=5. Thus

r = sqrt(3^2 + 5^2) = sqrt(9+25) = sqrt(34)r=32+52=9+25=34

and

theta = tan^(-1)(5/3) ~~ 59.04^@θ=tan1(53)59.04

So we have the trigonometric form

3+5i = sqrt(34)(cos(tan^(-1)(5/3)) + isin(tan^(-1)(5/3)))3+5i=34(cos(tan1(53))+isin(tan1(53)))

~~ sqrt(34)(cos(59.04^@) + isin(59.04^@))34(cos(59.04)+isin(59.04))