What is the trigonometric form of (5+10i)(3+3i) (5+10i)(3+3i)?

1 Answer
May 3, 2018

15 \sqrt{10} text{ cis} ( text{Arc}text{tan}(-3) ) 1510 cis(Arctan(3))

Explanation:

(5+10i)(3+3i) = 15(1+2i)(1+i) = 15(-1 + 3i)(5+10i)(3+3i)=15(1+2i)(1+i)=15(1+3i)

= 15 \sqrt{1^2+3^2} (text{cis} ( arctan2(3 //, -1) ) }=1512+32(cis(arctan2(3/,1))}

I employ the funny notation because it take a two parameter, four quadrant arctangent in general. This one's in the fourth quadrant, so the principal value of the arctangent is sufficient:

= 15 \sqrt{10} text{ cis} ( text{Arc}text{tan}(-3) ) =1510 cis(Arctan(3))