What is the trigonometric form of (52i)(2+3i)?

1 Answer
Jan 6, 2016

377{cos(tan1(1116))+isin(tan1(1116))}

Explanation:

(52i)(2+3i)

Multiply using FOIL

(5)(2)+5(3i)+(2i)(2)+(2i)(3i)
10+15i4i6i2
=10+11i6(1) since i2=1
=10+6+11i
=16+11i

Trigonometric form is r(cos(θ)+isin(θ))
if z=x+iy

r=x2+y2 and θ=tan1(yx)

r=162+112 and θ=tan1(1116)
r=256+121
r=377
Trigonometric form

377{cos(tan1(1116))+isin(tan1(1116))}