What is the trigonometric form of (5+i) (5+i)?

1 Answer
Jun 12, 2016

sqrt26(cos(0.197)+isin(0.197))26(cos(0.197)+isin(0.197))

Explanation:

To convert a complex number into trig form.

color(red)(|bar(ul(color(white)(a/a)color(black)(x+yi=r(costheta+isintheta))color(white)(a/a)|)))
where r is the magnitude and theta the argument.

Since( 5 + i) is in the 1st quadrant the the following formulae allow us to calculate r and theta

•r=sqrt(x^2+y^2

•theta=tan^-1(y/x)

here x = 5 and y = 1

rArrr=sqrt(5^2+1^2)=sqrt26

and theta=tan^-1(1/5)=0.197" radians""or11.3^@

rArr5+i=sqrt26(cos(0.197)+isin(0.197))