What is the trigonometric form of (65i)?

1 Answer
Jun 14, 2018

(6i5)=(7.81cos(219.8)+i7.81sin(219.8))

Explanation:

z=(6i5)

Polar form (r,θ)

r=(6)2+(5)2|=|61=7.81

θ=arctan(56)=arctan(56)=180+39.8=219.8, III Quadrant

Trigonometric form of z=(rcosθ+irsinθ)

(6i5)=(7.81cos(219.8)+i7.81sin(219.8))