What is the trigonometric form of (-6+9i) (6+9i)?

1 Answer
Jun 1, 2018

In trigonometric form expressed as
sqrt117(cos(123.69)+isin(123.69))117(cos(123.69)+isin(123.69))

Explanation:

Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=a2+b2;

Argument:theta=tan^-1(b/a)θ=tan1(ba) Trigonometrical form :

Z =|Z|(costheta+isintheta)Z=|Z|(cosθ+isinθ)

Z=(-6+9i)Z=(6+9i). Modulus |Z|=sqrt((-6 )^2+9^2)= sqrt 117|Z|=(6)2+92=117

Argument: tan alpha= 9/6=3/2:. alpha=tan^-1 (3/2)=56.31^0

Z lies on second quadrant, so , theta =180-alpha

:. theta= 180-56.31=123.69^0

:. Z=sqrt117(cos(123.69)+isin(123.69))

In trigonometric form expressed as

sqrt117(cos(123.69)+isin(123.69))[Ans]