What is the trigonometric form of (7-i) ?
1 Answer
Explanation:
To convert from
color(blue)"complex to trigonometric form" That is
(x+yi)to[r(costheta+isintheta)]" where"
color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and"
color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|))) For (7 - i) , x = 7 and y = - 1
rArrr=sqrt(7^2+(-1)^2)=sqrt50=5sqrt2 Now (7 - i) is in the 4th quadrant, so we must ensure that
theta is in the 4th quadrant.
theta=tan^-1(-1/7)=-0.142" in 4th quadrant"
rArr(7-i)=5sqrt2(cos(-0.142)+isin(-0.142))
color(orange)"Reminder"
color(red)(|bar(ul(color(white)(a/a)color(black)(cos(-theta)=costheta" and " sin(-theta)=-sintheta)color(white)(a/a)|)))
rArr(7-i)=5sqrt2(cos(0.142)-isin(0.142))