How do you differentiate # g(x) =(1+cosx)/(1-cosx) #?

3 Answers
May 1, 2017

By simplification

Explanation:

#d/dxg(x)=d/dxcot^2(x/2)#
#2cot(x/2)*cosec^2(x/2)*1/2#
#cot(x/2)*cosec^2(x/2)#

May 1, 2017

Use the quotient rule :

#(d(f(x)/(h(x))))/dx = (f'(x)h(x)-f(x)h'(x))/(h(x))^2#

Explanation:

Let #f(x) = 1 +cos(x)#, then #f'(x) = -sin(x)#
Let #h(x) = 1-cos(x)#, then #h'(x) = sin(x)#

Substituting into the quotient rule:

#(d((1 +cos(x))/(1-cos(x))))/dx = ((-sin(x))(1-cos(x))-(1 +cos(x))(sin(x)))/(1-cos(x))^2#

May 1, 2017

#g'(x)=-(2sinx)/(1-cosx)^2#

Explanation:

differentiate using the #color(blue)"quotient rule"#

#"Given " f(x)=(g(x))/(h(x))" then"#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"#

#"here " g(x)=1+cosxrArrg'(x)=-sinx#

#h(x)=1-cosxrArrh'(x)=sinx#

#rArrf'(x)=((1-cosx)(-sinx)-(1+cosx)(sinx))/(1-cosx)^2#

#color(white)(rArrf'(x))=(-sinx+sinxcosx-sinx-sinxcosx)/(1-cosx)^2#

#color(white)(rArrf'(x))=-(2sinx)/(1-cosx)^2#