How do you differentiate f(x)=sinx/xf(x)=sinxx?

3 Answers
Jul 7, 2017

f'(x)=(xcosx-sinx)/x^2.

Explanation:

Given that, f(x)=sinx/x, and need f'(x).

The Quotient Rule for Diffn. states that,

f(x)=g(x)/(h(x)) rArr f'(x)={h(x)g'(x)-g(x)h'(x)}/[h(x)]^2....(star).

Here,

g(x)=sinx, &, h(x)=x rArr g'(x)=cosx, &, h'(x)=1.

:.," by (star), "f'(x)=(xcosx-sinx)/x^2.

Jul 7, 2017

f'(x)=(xcosx-sinx)/x^2

Explanation:

"differentiate using the "color(blue)"quotient rule"

"given " f(x)=(g(x))/(h(x))" then"

f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"

g(x)=sinxrArrg'(x)=cosx

h(x)=xrArrh'(x)=1

rArrf'(x)=(xcosx-sinx)/x^2

Jul 7, 2017

d/(dx) [(sinx)/x] = color(blue)((xcosx - sinx)/(x^2))

Explanation:

We can use the quotient rule:

d/(du) [u/v] = (v(du)/(dx) - u(dv)/(dx))/(v^2)

where

  • u = sinx

  • v = x:

= (x(d/(dx)[sinx]) - d/(dx)[x]sinx)/(x^2)

Te derivative of sinx is cosx:

= (xcosx - d/(dx)[x]sinx)/(x^2)

The derivative of x is 1 (power rule):

= color(blue)((xcosx - sinx)/(x^2))