How do you differentiate g(x) =(1+cosx)/(1-cosx) g(x)=1+cosx1cosx?

3 Answers
May 1, 2017

By simplification

Explanation:

d/dxg(x)=d/dxcot^2(x/2)ddxg(x)=ddxcot2(x2)
2cot(x/2)*cosec^2(x/2)*1/22cot(x2)cosec2(x2)12
cot(x/2)*cosec^2(x/2)cot(x2)cosec2(x2)

May 1, 2017

Use the quotient rule :

(d(f(x)/(h(x))))/dx = (f'(x)h(x)-f(x)h'(x))/(h(x))^2

Explanation:

Let f(x) = 1 +cos(x), then f'(x) = -sin(x)
Let h(x) = 1-cos(x), then h'(x) = sin(x)

Substituting into the quotient rule:

(d((1 +cos(x))/(1-cos(x))))/dx = ((-sin(x))(1-cos(x))-(1 +cos(x))(sin(x)))/(1-cos(x))^2

May 1, 2017

g'(x)=-(2sinx)/(1-cosx)^2

Explanation:

differentiate using the color(blue)"quotient rule"

"Given " f(x)=(g(x))/(h(x))" then"

f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"

"here " g(x)=1+cosxrArrg'(x)=-sinx

h(x)=1-cosxrArrh'(x)=sinx

rArrf'(x)=((1-cosx)(-sinx)-(1+cosx)(sinx))/(1-cosx)^2

color(white)(rArrf'(x))=(-sinx+sinxcosx-sinx-sinxcosx)/(1-cosx)^2

color(white)(rArrf'(x))=-(2sinx)/(1-cosx)^2