What is the derivative of tan(2x)tan(2x)?

1 Answer
Oct 26, 2016

(dy)/(dx)=2sec^2(2x)dydx=2sec2(2x)

Explanation:

y=tan(2x)y=tan(2x)

u=2x=>(du)/dx=2u=2xdudx=2

y=tanu=>(dy)/(du)=sec^2uy=tanudydu=sec2u

the chain rule:

(dy)/(dx)=(dy)/(du)xx(du)/(dx)dydx=dydu×dudx

:.(dy)/(dx)=(sec^2u)xx2

(dy)/(dx)=2sec^2u=2sec^2(2x)