Finding Distance Between Polar Coordinates
Key Questions
-
Hello,
- In a orthonormal basis, the distance between
#A(x,y)# and#A'(x',y')# is
#d = sqrt((x-x')^2 + (y-y')^2)# .- With polar coordinates,
#A[t, theta]# and#A'[r',theta']# , you have to write the relations :
#x = r cos theta, y = r sin theta#
#x' = r' cos theta', y' = r' sin theta'# ,So,
#d = sqrt((r cos theta - r' cos theta')^2 + (r sin theta - r' sin theta')^2 )# Develop, and use the formula
#cos^2 x + sin^2 x = 1# . So you get :#d = sqrt(r^2 - 2 rr' (cos theta cos theta' + sin theta sin theta')+ r'^2)# Finally, you know that
#cos theta cos theta' + sin theta sin theta' = cos(theta - theta')# , therefore,#d = sqrt(r^2 + r'^2 - 2rr' cos(theta - theta'))# . - In a orthonormal basis, the distance between
-
Let say you have points
#A(r_1,θ_1),Β(r_2,θ_2)# you must convert them to cartesian coordinates#A(x_1,y_1),Β(x_2,y_2)# and then use the distance formula#D=sqrt((x_2-x_1)^2+(y_2-y_1)^2)# -
Answer:
See below.
Explanation:
Given in cartesian coordinates.
#P_1=(x_1,y_1)# and#P_2= (x_2,y_2)# the transition formulas
#{(x=r cos theta),(y=r sin theta):}# then
#(x_1,y_1) rArr (r_1 cos theta_1, r_1 sin theta_1)#
#(x_2,y_2) rArr (r_2 cos theta_2, r_2 sin theta_2)# so
#d = sqrt((x_1-x_2)^2+(y_1-y_2)^2) rArr sqrt((r_1 costheta_1-r_2 cos theta_2)^2+(r_1 sin theta_1-r_2 sin theta_2)^2)# then
#d = sqrt(r_1^2+r_2^2-2r_1r_2(cos theta_1 cos theta_2+sin theta_1 sin theta_2)) = sqrt(r_1^2+r_2^2-2r_1r_2cos (theta_1 -theta_2))#