Question #f6317

1 Answer
May 18, 2016

I have corrected the question. (3i)3=8i

Explanation:

De Moivre's Theorem; If cisθ=cosθ+isinθ, then

(cisθ)n=cisnθ=cosnθ+isinnθ

compare (3i) with rcisθ.

rcosθ=3andrsinθ=1. Solving,

r=2andθ=π6.

So, (3i)3=(2(cis(π6))3=23cis(3(π6))=8cis(π2)=8(cos(π2)+isin(π2))=8(0i)=8i.

.