Let z=r(cos theta+isin theta)z=r(cosθ+isinθ) be the square-roots of 2i2i.
z^2=[r(cos theta+isin theta)]^2z2=[r(cosθ+isinθ)]2
by De Moivre's Theorem,
=r^2(cos2theta+isin2theta)=2i=2(0+1i)=r2(cos2θ+isin2θ)=2i=2(0+1i)
Rightarrow r^2=2 Rightarrow r=sqrt{2} ⇒r2=2⇒r=√2
Rightarrow{(cos2theta=0),(sin2theta=1):}}Rightarrow2theta=pi/2+2npi
Rightarrow theta=pi/4+npi,
where n is any integer.
So,
z={sqrt{2}[cos(pi/4)+isin(pi/4)],sqrt{2}[cos({5pi}/4)+isin({5pi}/4)]}
={sqrt{2}(1/sqrt{2}+1/{sqrt{2}}i),sqrt{2}(-1/sqrt{2}-1/sqrt{2}i)}
={1+i,-1-i}
I hope that this was helpful.