How do you find [2(\cos 120^\circ + i \sin 120^\circ)]^5[2(cos120+isin120)]5 using the De Moivre's theorem?

1 Answer
Oct 23, 2014

De Moivre's Theorem

(cos theta+i sin theta)^n=cos(n theta)+isin(n theta)(cosθ+isinθ)n=cos(nθ)+isin(nθ)


Let us now look at the posted problem.

[2(cos120^{circ}+isin120^{circ})]^5[2(cos120+isin120)]5

by the exponential property (ab)^n=a^nb^n(ab)n=anbn,

=2^5(cos120^{circ}+i sin120^{circ})^5=25(cos120+isin120)5

by De Moivre's Theorem,

=32(cos600^{circ}+i sin600^{circ})=32(cos600+isin600)

since 600^{circ}=360^{circ}+240^{circ}600=360+240,

=32(cos240^{circ}+isin240^{circ})=32(cos240+isin240)

since sin240^circ=-1/2sin240=12 and cos240^circ=-sqrt{3}/2cos240=32,

=32(-1/2-sqrt{3}/2i)=32(1232i)

by factoring out -1/212,

=-16(1+sqrt{3}i)=16(1+3i)


I hope that this was helpful.