How do I use DeMoivre's theorem to find (1-i)^10(1i)10?

1 Answer
Nov 4, 2015

-32i32i

Explanation:

First write this complex number in polar form and then apply De Moivre :

(1-i)^10=(sqrt2/_-pi/4)^10=[sqrt2(cos(-pi/4)+isin(-pi/4))]^10(1i)10=(2π4)10=[2(cos(π4)+isin(π4))]10

=(sqrt2)^10[cos(-10pi/4)+isin(-10pi/4)]=(2)10[cos(10π4)+isin(10π4)]

=-32i=32i