Let #z=2+2i=2(1+i)#
Transform #z=a+ib# from algebraic form into polar form
#z=|z|(a/(|a|)+ib/(|z|))#
where,
#{(costheta=a/(|z|)),(sintheta=b/(|z|)):}#
Here,
#|z|=sqrt(1^2+1^2)=sqrt2#
#z=2sqrt2(1/sqrt2+i/sqrt2)#
#{(costheta=1/sqrt2),(sintheta=1/sqrt2)):}#
#=>#, #theta=1/4pi#, #[2pi]#
The polar form is
#z=2sqrt2(cos(pi/4)+isin(pi/4))#
Demoivre's theorem is
#(costheta+isintheta)^n=cos(ntheta)+isin(ntheta)#
Therefore,
#(2+2i)^6=(2sqrt2(cos(pi/4)+isin(pi/4)))^6#
#=(2sqrt2)^6(cos(pi/4*6)+isin(pi/4*6))#
#=(2sqrt2)^6(cos(3/2pi)+isin(3/2pi))#
#=512(0-i)#
#=-512i#