How do I use DeMoivre's theorem to find (2+2i)^6(2+2i)6?

1 Answer
May 10, 2018

The answer is =-512i=512i

Explanation:

Let z=2+2i=2(1+i)z=2+2i=2(1+i)

Transform z=a+ibz=a+ib from algebraic form into polar form

z=|z|(a/(|a|)+ib/(|z|))z=|z|(a|a|+ib|z|)

where,

{(costheta=a/(|z|)),(sintheta=b/(|z|)):}

Here,

|z|=sqrt(1^2+1^2)=sqrt2

z=2sqrt2(1/sqrt2+i/sqrt2)

{(costheta=1/sqrt2),(sintheta=1/sqrt2)):}

=>, theta=1/4pi, [2pi]

The polar form is

z=2sqrt2(cos(pi/4)+isin(pi/4))

Demoivre's theorem is

(costheta+isintheta)^n=cos(ntheta)+isin(ntheta)

Therefore,

(2+2i)^6=(2sqrt2(cos(pi/4)+isin(pi/4)))^6

=(2sqrt2)^6(cos(pi/4*6)+isin(pi/4*6))

=(2sqrt2)^6(cos(3/2pi)+isin(3/2pi))

=512(0-i)

=-512i