Let z=2+2i=2(1+i)z=2+2i=2(1+i)
Transform z=a+ibz=a+ib from algebraic form into polar form
z=|z|(a/(|a|)+ib/(|z|))z=|z|(a|a|+ib|z|)
where,
{(costheta=a/(|z|)),(sintheta=b/(|z|)):}
Here,
|z|=sqrt(1^2+1^2)=sqrt2
z=2sqrt2(1/sqrt2+i/sqrt2)
{(costheta=1/sqrt2),(sintheta=1/sqrt2)):}
=>, theta=1/4pi, [2pi]
The polar form is
z=2sqrt2(cos(pi/4)+isin(pi/4))
Demoivre's theorem is
(costheta+isintheta)^n=cos(ntheta)+isin(ntheta)
Therefore,
(2+2i)^6=(2sqrt2(cos(pi/4)+isin(pi/4)))^6
=(2sqrt2)^6(cos(pi/4*6)+isin(pi/4*6))
=(2sqrt2)^6(cos(3/2pi)+isin(3/2pi))
=512(0-i)
=-512i