How do you find the equation of the tangent line to the polar curve r=3+8sin(theta)r=3+8sin(θ) at theta=pi/6θ=π6 ?

1 Answer
Sep 21, 2014

The equation of the tangent line is

y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2)y72=1135(x732)

Explanation:

In order to find the equation of a line, we need two pieces of information:

{(1. "Point: " (x_1,y_1)),(2. "Slope: " m):}

Let us find (x_1,y_1).

Since

{(x(theta)=rcos theta=(3+8sin theta)cos theta),(y(theta)=rsin theta=(3+8sin theta)sin theta):},

x_1=x(pi/6)=[3+8sin(pi/6)]cos(pi/6)={7sqrt{3}}/2

y_1=y(pi/6)=[3+8sin(pi/6)]sin(pi/6)=7/2

Now, let us find m.

By differentiating with respect to theta#,

{dx}/{d theta}=8cos theta cdot cos theta+(3+8sin theta)cdot(-sin theta)

=8(cos^2theta-sin^2theta)-3sin theta

=8cos(2theta)-3sin theta

{dy}/{d theta}=8cos theta cdot sin theta+(3 + 8sin theta)cdot cos theta

=8(2sin theta cos theta)+3cos theta

=8sin(2theta)+3cos theta

So,

{dy}/{dx}={{dy}/{d theta}}/{{dx}/{d theta}}={8sin(2theta)+3cos theta}/{8cos(2theta)-3sin theta}

Now, we can find m.

m={dy}/{dx}|_{theta=pi/6} ={8({sqrt{3}}/2)+3({sqrt{3}}/2)}/{8(1/2)-3(1/2)}={11sqrt{3}}/5

By Point-Slope Form: y-y_1=m(x-x_1),

y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2)