In order to find the equation of a line, we need two pieces of information:
{(1. "Point: " (x_1,y_1)),(2. "Slope: " m):}
Let us find (x_1,y_1).
Since
{(x(theta)=rcos theta=(3+8sin theta)cos theta),(y(theta)=rsin theta=(3+8sin theta)sin theta):},
x_1=x(pi/6)=[3+8sin(pi/6)]cos(pi/6)={7sqrt{3}}/2
y_1=y(pi/6)=[3+8sin(pi/6)]sin(pi/6)=7/2
Now, let us find m.
By differentiating with respect to theta#,
{dx}/{d theta}=8cos theta cdot cos theta+(3+8sin theta)cdot(-sin theta)
=8(cos^2theta-sin^2theta)-3sin theta
=8cos(2theta)-3sin theta
{dy}/{d theta}=8cos theta cdot sin theta+(3 + 8sin theta)cdot cos theta
=8(2sin theta cos theta)+3cos theta
=8sin(2theta)+3cos theta
So,
{dy}/{dx}={{dy}/{d theta}}/{{dx}/{d theta}}={8sin(2theta)+3cos theta}/{8cos(2theta)-3sin theta}
Now, we can find m.
m={dy}/{dx}|_{theta=pi/6}
={8({sqrt{3}}/2)+3({sqrt{3}}/2)}/{8(1/2)-3(1/2)}={11sqrt{3}}/5
By Point-Slope Form: y-y_1=m(x-x_1),
y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2)