How do you find the slope of the polar curve r=1+sin(theta) at theta=pi/4 ?

1 Answer
Oct 10, 2014

By converting into parametric equations,

{(x(theta)=r(theta)cos theta=(1+sin theta)cos theta),(y(theta)=r(theta)sin theta=(1+sin theta)sin theta):}

By finding the derivatives using Product Rule,

x'(theta)=cos theta cdot cos theta + (1+sin theta)cdot(-sin theta)

=(cos^2theta-sin^2theta)-sin theta

=cos2theta-sin theta

Rightarrow x'(pi/4)=cos(pi/2)-sin(pi/4)=-1/sqrt{2}

y'(theta)=cos theta cdot sin theta+(1+sin theta)cdot cos theta

=2sin theta cos theta+cos theta

=sin2theta+cos theta

Rightarrow y'(pi/4)=sin(pi/2)+cos(pi/4)=1+1/sqrt{2}

The slope m we are looking for is:

m={dy}/{dx}|_{theta=pi/4}={y'(pi/4)}/{x'(pi/4)}={1+1/sqrt{2}}/{-1/sqrt{2}} =-(sqrt{2}+1)

I hope that this was helpful.