Determining the Slope and Tangent Lines for a Polar Curve
Key Questions
-
By converting into parametric equations,
#{(x(theta)=r(theta)cos theta=cos2theta cos theta), (y(theta)=r(theta)sin theta=cos2theta sin theta):}# By Product Rule,
#x'(theta)=-sin2theta cos theta-cos2theta sin theta# #x'(pi/2)=-sin(pi)cos(pi/2)-cos(pi)sin(pi/2)=1# #y'(theta)=-sin2thetasin theta+cos2theta cos theta# #y'(pi/2)=-sin(pi)sin(pi/2)+cos(pi)cos(pi/2)=0# So, the slope
#m# of the curve can be found by#m={dy}/{dx}|_{theta=pi/2}={y'(pi/2)}/{x'(pi/2)}=0/1=0# I hope that this was helpful.
-
Answer:
The equation of the tangent line is
#y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2)# Explanation:
In order to find the equation of a line, we need two pieces of information:
#{(1. "Point: " (x_1,y_1)),(2. "Slope: " m):}# Let us find
#(x_1,y_1)# .Since
#{(x(theta)=rcos theta=(3+8sin theta)cos theta),(y(theta)=rsin theta=(3+8sin theta)sin theta):}# ,#x_1=x(pi/6)=[3+8sin(pi/6)]cos(pi/6)={7sqrt{3}}/2# #y_1=y(pi/6)=[3+8sin(pi/6)]sin(pi/6)=7/2# Now, let us find
#m# .By differentiating with respect to theta#,
#{dx}/{d theta}=8cos theta cdot cos theta+(3+8sin theta)cdot(-sin theta)# #=8(cos^2theta-sin^2theta)-3sin theta# #=8cos(2theta)-3sin theta# #{dy}/{d theta}=8cos theta cdot sin theta+(3 + 8sin theta)cdot cos theta# #=8(2sin theta cos theta)+3cos theta# #=8sin(2theta)+3cos theta# So,
#{dy}/{dx}={{dy}/{d theta}}/{{dx}/{d theta}}={8sin(2theta)+3cos theta}/{8cos(2theta)-3sin theta}# Now, we can find
#m# .#m={dy}/{dx}|_{theta=pi/6} ={8({sqrt{3}}/2)+3({sqrt{3}}/2)}/{8(1/2)-3(1/2)}={11sqrt{3}}/5# By Point-Slope Form:
#y-y_1=m(x-x_1)# ,#y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2)# -
A polar equation of the form
#r=r(theta)# can be converted into a pair of parametric equations#{(x(theta)=r(theta)cos theta),(y(theta)=r(theta)sin theta):}# .The slope
#m# of the tangent line at#theta=theta_0# can be expressed as#m={dy}/{dx}|_{theta=theta_0}={{dy}/{d theta}|_{theta=theta_0}}/{{dx}/{d theta}|_{theta=theta_0}}={y'(theta_0)}/{x'(theta_0)}# .I hope that this was helpful.