How do you find the slope of the polar curve r=3+8sin(theta)r=3+8sin(θ) at theta=pi/6θ=π6 ?

1 Answer
Oct 30, 2014

r(theta)=3+8sin thetar(θ)=3+8sinθ

by converting into parametric equations,

Rightarrow{(x(theta)=r(theta)cos theta=(3+8sin theta)cos theta),(y(theta)=r(theta)sin theta=(3+8sin theta)sin theta):}

By differentiating with respect to theta,

x'(theta)=8cos theta cdotcos theta+(3+8sin theta)cdot(-sin theta)

=8(cos^2theta-sin^2theta)-3sin theta

=8cos2theta-3sin theta

by evaluating at theta=pi/6,

Rightarrow x'(pi/6)=8cos(pi/3)-3sin(pi/6)=4-3/2=5/2

By differentiating with respect to theta,

y'(theta)=8cos theta cdot sin theta+(3+8sin theta)cdotcos theta

=16sin theta cos theta+3cos theta

=8sin2theta+3cos theta

by evaluating at theta=pi/6,

Rightarrow y'(pi/6)=8sin(pi/3)+3cos(pi/6)=4sqrt{3}+{3sqrt{3}}/2={11sqrt{3}}/2

So, the slope m can be found by

m={dy}/{dx}|_{theta=pi/6}={{dy}/{d theta}|_{theta = pi /6}}/{{dx]/{d theta}|_{theta = pi /6}}={y'(pi/6)}/{x'(pi/6)}={{11sqrt{3}}/{2}}/{{5}/{2}}={11sqrt{3}}/5

The graph along with its tangent line at theta=pi/6 looks like:

enter image source here


I hope that this was helpful.