How do you find the exact length of the polar curve r=3sin(theta)r=3sin(θ) on the interval 0<=theta<=pi/30θπ3 ?

1 Answer
Sep 21, 2014

The arc length is piπ.

Let us look at some details.

r=3sin thetar=3sinθ

by differentiating with respect to thetaθ,

Rightarrow {dr}/{d theta}=3cos thetadrdθ=3cosθ

So, the arc length L can be found by

L=int_0^{pi/3}sqrt{r^2+({dr}/{d theta})^2}d thetaL=π30r2+(drdθ)2dθ

=int_0^{pi/3}sqrt{3^2sin^2theta+3^2cos^2theta}d theta=π3032sin2θ+32cos2θdθ

by pulling 33 out of the square-root,

=3int_0^{pi/3}sqrt{sin^2theta+cos^2theta}d theta=3π30sin2θ+cos2θdθ

by sin^2theta+cos^2theta=1sin2θ+cos2θ=1,

=3int_0^{pi/3}d theta=3[theta]_0^{pi/3}=3(pi/3-0)=pi=3π30dθ=3[θ]π30=3(π30)=π