How do you find the integral intx^3/(sqrt(16-x^2))dx ?

1 Answer
Aug 27, 2014

=(16-x^2)^(3/2)/3-16sqrt(16-x^2)+c, where c is a constant

Solution

=intx^3/sqrt(16-x^2)dx=int(x^2*x)/sqrt(16-x^2)dx

Using Integration by Substitution

let's assume (16-x^2)=t^2, =>-2xdx=2tdt

xdx=-tdt

=int(-(16-t^2)t)/tdt

=int(t^2-16)dt

=intt^2dt-16intdt

=t^3/3-16t+c, where c is a constant

=(16-x^2)^(3/2)/3-16sqrt(16-x^2)+c, where c is a constant