How do you find the integral intx^3/(sqrt(16-x^2))dx ?
1 Answer
Aug 27, 2014
=(16-x^2)^(3/2)/3-16sqrt(16-x^2)+c , wherec is a constantSolution
=intx^3/sqrt(16-x^2)dx=int(x^2*x)/sqrt(16-x^2)dx Using Integration by Substitution
let's assume
(16-x^2)=t^2 ,=>-2xdx=2tdt
xdx=-tdt
=int(-(16-t^2)t)/tdt
=int(t^2-16)dt
=intt^2dt-16intdt
=t^3/3-16t+c , wherec is a constant
=(16-x^2)^(3/2)/3-16sqrt(16-x^2)+c , wherec is a constant