Answer, =14(sin−1(x2)+x2√1−x4)+c
Explanation :
∫x⋅√1−x4dx=∫x⋅√1−(x2)2dx
Using Trigonometric Substitution
let's x2=sint,⇒2xdx=costdt. Here I am using sint, it can also be done by considering x2=cost.
Now plugging in integral,
=∫12√1−x4(2xdx)
=∫12⋅cost⋅√1−sin2tdt
Using the identity, sin2t+cos2t=1
we get,
=∫12⋅cos2tdt,
Using another important identity, cos2t=cos2t−sin2t
⇒cos2t=2cos2t−1
⇒cos2t=1+cos2t2
=∫12⋅12⋅(1+cos2t)dt=14∫1dt+14∫cos2tdt
Using Trigonometric functions,
=14⋅t+14sin2t2+c, where c is constant
=14⋅(t+sin2t2)+c
Use the identity sin2t=2sintcost:
=14(t+2sintcost2)+c
=14(t+sintcost)+c
=14(t+sint√1−sin2t)+c
And substituting sint=x2 back in:
=14(sin−1(x2)+x2√1−x4)+c