How do you find the integral x1x4dx ?

1 Answer

Answer, =14(sin1(x2)+x21x4)+c

Explanation :
x1x4dx=x1(x2)2dx

Using Trigonometric Substitution
let's x2=sint,2xdx=costdt. Here I am using sint, it can also be done by considering x2=cost.

Now plugging in integral,

=121x4(2xdx)

=12cost1sin2tdt

Using the identity, sin2t+cos2t=1
we get,

=12cos2tdt,

Using another important identity, cos2t=cos2tsin2t
cos2t=2cos2t1

cos2t=1+cos2t2

=1212(1+cos2t)dt=141dt+14cos2tdt

Using Trigonometric functions,

=14t+14sin2t2+c, where c is constant

=14(t+sin2t2)+c

Use the identity sin2t=2sintcost:

=14(t+2sintcost2)+c
=14(t+sintcost)+c
=14(t+sint1sin2t)+c

And substituting sint=x2 back in:
=14(sin1(x2)+x21x4)+c