How do you find the integral intdt/(sqrt(t^2-6t+13))dtt26t+13 ?

1 Answer
Sep 10, 2014

By completing the square,
t^2-6t+13=(t^2-6t+9)+4=(t-3)^2+2^2t26t+13=(t26t+9)+4=(t3)2+22

So, we can rewrite the integral as
int{dt}/{sqrt{(t-3)^2+2^2}}dt(t3)2+22

Let t-3=2tan thetat3=2tanθ.
Rightarrow {dt}/{d theta}=2sec^2 theta Rightarrow dt=2sec^2 theta d thetadtdθ=2sec2θdt=2sec2θdθ

by the above substitution,
=int{2sec^2theta d theta}/{sqrt{(2tan theta)^2+2^2)} =int{sec^2theta}/{sqrt{tan^2theta+1}}d theta=2sec2θdθ(2tanθ)2+22=sec2θtan2θ+1dθ
by the identity tan^2theta+1=sec^2thetatan2θ+1=sec2θ,
=int{sec^2theta}/{sqrt{sec^2theta}}d theta=int sec theta d theta=ln|sec theta + tan theta|+C_1=sec2θsec2θdθ=secθdθ=ln|secθ+tanθ|+C1
by using
tan theta={t-3}/2tanθ=t32 and sec theta=sqrt{tan^2theta+1}={sqrt{t^2-6+13}}/2secθ=tan2θ+1=t26+132,
we have
=ln|{sqrt{t^2-6+13}}/2+{t-3}/2|+C_1=lnt26+132+t32+C1
=ln|{sqrt{t^2-6t+13}+t-3}/2|+C_1=lnt26t+13+t32+C1
by log property,
=ln|sqrt{t^2-6t+13}+t-3|-ln2+C_1=lnt26t+13+t3ln2+C1
by setting C=ln2+C_1C=ln2+C1,
=ln|sqrt{t^2-6t+13}+t-3|+C=lnt26t+13+t3+C