Integration by Trigonometric Substitution
Key Questions
-
Useful Trigonometric Identities
cos2θ+sin2θ=1 1+tan2θ=sec2θ sin2θ=2sinθcosθ cos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ cos2θ=12(1+cos2θ) sin2θ=12(1−cos2θ)
I hope that this was helpful.
-
By completing the square,
t2−6t+13=(t2−6t+9)+4=(t−3)2+22 So, we can rewrite the integral as
∫dt√(t−3)2+22 Let
t−3=2tanθ .
⇒dtdθ=2sec2θ⇒dt=2sec2θdθ by the above substitution,
=∫2sec2θdθ√(2tanθ)2+22=∫sec2θ√tan2θ+1dθ
by the identitytan2θ+1=sec2θ ,
=∫sec2θ√sec2θdθ=∫secθdθ=ln|secθ+tanθ|+C1
by using
tanθ=t−32 andsecθ=√tan2θ+1=√t2−6+132 ,
we have
=ln∣∣∣√t2−6+132+t−32∣∣∣+C1
=ln∣∣∣√t2−6t+13+t−32∣∣∣+C1
by log property,
=ln∣∣√t2−6t+13+t−3∣∣−ln2+C1
by settingC=ln2+C1 ,
=ln∣∣√t2−6t+13+t−3∣∣+C -
In general trigonometric substitutions are useful to solve the integrals of algebraic functions containing radicals in the form
√x2±a2 or√a2±x2 . Consider the different cases:A. Let
f(x) be a rational function ofx and√x2+a2 :∫f(x)dx=∫R(x,√x2+a2)dx Substitute:
x=atant ,dx=asec2tdt witht∈(−π2,π2) and use the trigonometric identity:1+tan2t=sec2t Considering that for
t∈(−π2,π2) the secant is positive:√x2+a2=√a2tan2t+a2 √x2+a2=a√tan2t+1=asect Then:
∫f(x)dx=∫R(atant,asect)sec2tdt B. Let
f(x) be a rational function ofx and√x2−a2 :∫f(x)dx=∫R(x,√x2−a2)dx Restrict the function to
x∈(a,+∞) and substitute:x=asect ,dx=asecttantdt witht∈(0,π2) and use the trigonometric identity:sec2t−1=tan2t Considering that for
t∈(0,π2) the tangent is positive:√x2−a2=√a2sec2t−a2 √x2−a2=a√sec2t−1=atant Then:
∫f(x)dx=∫R(asect,atant)secttantdt Normally you can see by differentiation that the solution that is found is valid also for
x∈(−∞,−a) C. Let
f(x) be a rational function ofx and√a2−x2 :∫f(x)dx=∫R(x,√a2−x2)dx Substitute:
x=asint ,dx=acost witht∈(−π2,π2) and use the trigonometric identity:1−sin2t=cos2t Considering that for
t∈(−π2,π2) the cosine is positive:√a2−x2=√a2−a2sin2t √a2−x2=a√1−sin2t=acost Then:
∫f(x)dx=∫R(asint,acost)costdt