How do you integrate int (2-x)/sqrt(x^2-4)dx using trigonometric substitution?
1 Answer
int (2-x)/sqrt(x^2-4) \ dx = 2ln|x + sqrt(x^2-4)| - sqrt(x^2-4) + C
Explanation:
We seek:
I = int (2-x)/sqrt(x^2-4) \ dx
I would not use trigonometric substitutions. Using linearity we can split this into two integrals:
I = int (2)/sqrt(x^2-4) - (x)/sqrt(x^2-4) \ dx
\ \ = int (2)/sqrt(x^2-4) \ dx - int \ (x)/sqrt(x^2-4) \ dx
Consider the first integral:
I_1 = int (2)/sqrt(x^2-4) \ dx
We can perform a substitution of the form:
u = x/2 => (du)/dx = 1/2
Substituting into the integral, we get:
I_1 = int (2)/sqrt((2u)^2-4) \ (2) du
\ \ \ = int (1)/sqrt(4(u^2-1)) \ du
\ \ \ = 2 int (1)/sqrt(u^2-1) \ du
Which is a standard integral, so we can readily integrate and restore the substitution:
I_1 = 2 ln|u+sqrt(u^2-1)|
\ \ \ = 2 ln |x/2 + sqrt(x^2/4-1) |
\ \ \ = 2 ln |x/2 + sqrt(1/4(x^2-4)) |
\ \ \ = 2 ln |x/2 + 1/2sqrt(x^2-4) |
\ \ \ = 2 ln |1/2(x + sqrt(x^2-4)) |
\ \ \ = 2 ln (1/2) + 2ln|x + sqrt(x^2-4)|
Now, we consider the second integral:
I_2 = int \ (x)/sqrt(x^2-4) \ dx
We can perform a substitution of the form:
u = x^2-4 => (du)/dx = 2x
Substituting into the integral, we get:
I_2 = int \ (1)/sqrt(u) \ (1/2) \ du
\ \ \ = 1/2 \ int \ (1)/sqrt(u) \ du
Which is a standard integral, so we can readily integrate and restore the substitution:
I_2 = (1/2 sqrt(u))/(1/2)
\ \ \ = sqrt(u)
\ \ \ = sqrt(x^2-4)
And Combining these results, and introducing a constant of integration, we get:
I = 2 ln (1/2) + 2ln|x + sqrt(x^2-4)| - sqrt(x^2-4) + C_1
\ \ = 2ln|x + sqrt(x^2-4)| - sqrt(x^2-4) + C