How do you Integrate cotxdx by using substitution?

1 Answer
Feb 26, 2015

Some basic identities that we'll need:
cos(x) = (cos(x))/(sin(x))

int (1/w) dw = ln(|w|) + C

( d sin(x))/(dx) = cos(x)

O.K. here we go:
int (cot(x)) dx = int ( (cos(x))/(sin(x)) ) dx

If we let
w = sin(x) then (dw)/(dx) = cos(x)
so
int (cos(x))/(sin (x)) dx = int ( ((dw)/(dx))/w) dx

=int 1/w dw

= ln(|w|) + C

= ln(|sin(x)|) + C