How do you evaluate the integral 11x2?

1 Answer
Jun 24, 2017

I=11x2dx

Let's try to get the integrand to resemble 1sin2θ. To do so, let x=cscθ. Then, dx=cscθcotθdθ, and:

I=11csc2θ(cscθcotθdθ)

I=1sin2θ(cscθcotθ)dθ

I=cosθ1sinθcosθsinθdθ

I=cot2θdθ

Use cot2θ=csc2θ1:

I=(1csc2θ)dθ

I=θ+cotθ

Reverse the substitution x=cscθ:

I=θ+csc2θ1

I=csc1x+x21+C