Use trigonometric substitution.
Draw a triangle with an angle θ.
Label the opposite side as x and adjacent side as 5.
Now examine the triangle and notice that
tanθ=x5
⇒x=5tanθ
⇒dx=5sec2θ dθ
By the Pythagorean Theorem, the hypotenuse of the triangle is:
√25+x2
So we can write
secθ=√25+x25
⇒√25+x2=5secθ
Let's now rewrite the integral in terms of θ
∫√25+x2dx⇒∫(5secθ)(5sec2θ dθ)
⇒25∫ sec3θ dθ
Integrating sec3θ can be tricky. There is a shortcut formula, but I'll do it the long way for teaching purposes.
Separate (sec3θ dθ) into (secθ⋅sec2θ dθ) and use integration by parts.
Let:
u=secθ
du=secθtanθ dθ
dv=sec2θ dθ
v=tanθ
Then:
⇒∫ sec3θ dθ=secθtanθ−∫ tan2θsecθ dθ
⇒∫ sec3θ dθ=secθtanθ−∫ (sec2θ−1)secθ dθ
⇒∫ sec3θ dθ=secθtanθ−∫ (sec3θ−secθ)dθ
⇒2∫ sec3θ dθ=secθtanθ+∫ secθ dθ
⇒2∫ sec3θ dθ=secθtanθ+ln|secθ+tanθ|
⇒∫ sec3θ dθ=12(secθtanθ+ln|secθ+tanθ|)+C
And let's not forget that our integral was multiplied by 25!
⇒25∫ sec3θ dθ=252(secθtanθ+ln|secθ+tanθ|)+C
Now put everything back in terms of x
⇒252(√25+x25x5+ln∣∣∣√25+x25+x5∣∣∣)+C
⇒12(x√25+x2+25ln∣∣∣√25+x2+x5∣∣∣)+C
⇒12(x√25+x2+25ln∣∣x+√25+x2∣∣−25ln5)+C
Then we can absorb the constant −25ln52 into C to get our final answer:
⇒12(x√25+x2+25ln∣∣x+√25+x2∣∣)+C