How do you find the indefinite integral of 25+x2?

1 Answer
Mar 26, 2018

12(x25+x2+25lnx+25+x2)+C

Explanation:

Use trigonometric substitution.

Draw a triangle with an angle θ.

Label the opposite side as x and adjacent side as 5.

Now examine the triangle and notice that

tanθ=x5

x=5tanθ

dx=5sec2θ dθ

By the Pythagorean Theorem, the hypotenuse of the triangle is:

25+x2

So we can write

secθ=25+x25

25+x2=5secθ

Let's now rewrite the integral in terms of θ

25+x2dx(5secθ)(5sec2θ dθ)

25 sec3θ dθ

Integrating sec3θ can be tricky. There is a shortcut formula, but I'll do it the long way for teaching purposes.

Separate (sec3θ dθ) into (secθsec2θ dθ) and use integration by parts.

Let:

u=secθ
du=secθtanθ dθ

dv=sec2θ dθ
v=tanθ

Then:

sec3θ dθ=secθtanθ tan2θsecθ dθ

sec3θ dθ=secθtanθ (sec2θ1)secθ dθ

sec3θ dθ=secθtanθ (sec3θsecθ)dθ

2 sec3θ dθ=secθtanθ+ secθ dθ

2 sec3θ dθ=secθtanθ+ln|secθ+tanθ|

sec3θ dθ=12(secθtanθ+ln|secθ+tanθ|)+C

And let's not forget that our integral was multiplied by 25!

25 sec3θ dθ=252(secθtanθ+ln|secθ+tanθ|)+C

Now put everything back in terms of x

252(25+x25x5+ln25+x25+x5)+C

12(x25+x2+25ln25+x2+x5)+C

12(x25+x2+25lnx+25+x225ln5)+C

Then we can absorb the constant 25ln52 into C to get our final answer:

12(x25+x2+25lnx+25+x2)+C