How do you find the integral of int t/sqrt(1-t^4)dt?

1 Answer
Jan 15, 2017

1/2sin^-1(t^2)+C

Explanation:

I=intt/sqrt(1-t^4)dt

We will use the substitution t^2=sintheta. Thus 2tdt=costhetad theta and t^4=sin^2theta. Then:

I=1/2int(2tdt)/sqrt(1-t^4)

I=1/2intcostheta/sqrt(1-sin^2theta)d theta

Using sin^2theta+cos^2theta=1 we see that sqrt(1-sin^2theta)=costheta.

I=1/2intcostheta/costhetad theta

I=1/2intd theta

I=1/2theta+C

From the original substitution t^2=sintheta we see that theta=sin^-1(t^2).

I=1/2sin^-1(t^2)+C