How do you find the integral of int t/sqrt(1-t^4)dt?
1 Answer
Jan 15, 2017
Explanation:
I=intt/sqrt(1-t^4)dt
We will use the substitution
I=1/2int(2tdt)/sqrt(1-t^4)
I=1/2intcostheta/sqrt(1-sin^2theta)d theta
Using
I=1/2intcostheta/costhetad theta
I=1/2intd theta
I=1/2theta+C
From the original substitution
I=1/2sin^-1(t^2)+C