Solve using trig sub: \int(\sec^2\theta\tan^2\theta)/\sqrt(9-\tan^2\theta)d\theta?

Symbolab has it with u-sub, so...

(Unless you have to do u-sub to get the trig-sub?)

2 Answers
Apr 30, 2018

9/2 sin^-1(1/3 tan theta ) - 1/2 tan theta sqrt(9-tan^2 theta)+C

Explanation:

Substitute tan theta = 3 sin phi, to get sec^2 theta\ d theta = 3 cos phi\ d phi so that

\int(\sec^2\theta\tan^2\theta)/\sqrt(9-\tan^2\theta)d\theta = int {(3 sin phi)^2 3 cos phi\ d phi}/{3 cos phi}
qquad = 9 int\ sin^2 phi\ d phi = 9/2 int \ (1-cos(2 phi))\ d phi
qquad = 9/2 phi-9/4 sin(2 phi)+C
qquad = 9/2 phi -9/2 sin phi cos phi=C
qquad = 9/2 sin^-1(1/3 tan theta ) - 9/2 1/3 tan theta sqrt(1-(1/3 tan theta)^2)+C
qquad = 9/2 sin^-1(1/3 tan theta ) - 1/2 tan theta sqrt(9-tan^2 theta)+C

Apr 30, 2018

-1/2tanthetasqrt(9-tan^2theta)+9/2arc sin(1/3*tantheta)+C.

Explanation:

As Second Method, let us solve this Problem without using

any Trigonometric Substitution.

If we take tantheta=t, then, sec^2thetad theta=dt.

:. I=int(tan^2thetasec^2theta)/sqrt(9-tan^2theta)d theta,

=intt^2/sqrt(9-t^2)dt,

=-int{(9-t^2)-9}/sqrt(9-t^2)dt,

=-int{(9-t^2)/sqrt(9-t^2)-9/sqrt(9-t^2)}dt,

=-intsqrt(3^2-t^2)dt+9int1/sqrt(9-t^2)dt,

=-{t/2sqrt(9-t^2)+9/2arc sin(t/3)}+9arcsin(t/3),

=-t/2sqrt(9-t^2)+9/2arc sin(t/3).

because t=tantheta,

I=-1/2tanthetasqrt(9-tan^2theta)+9/2arc sin(1/3*tantheta)+C.

Feel the Joy of Maths.!