How do you integrate int sec^3xtanx?

2 Answers
Dec 24, 2016

intsec^3(x)tan(x)dx=sec^3(x)/3+C

Explanation:

Using integration by substitution:

Let u = sec(x) => du = sec(x)tan(x)dx

then

intsec^3(x)tan(x)dx = intsec^2(x)(sec(x)tan(x))dx

=intu^2du

=u^3/3+C

=sec^3(x)/3+C

Dec 24, 2016

See below.

Explanation:

I would use a simple u substitution.

intsec^3xtanxdx

u=secx

du=secxtanxdx

=>intu^2du

=>1/3u^3+C

=>(sec^3x)/3 +C