How do you integrate int (x^2 -x) / sqrt(9 - x^2) dxx2x9x2dx using trigonometric substitution?

1 Answer
May 13, 2018

I=9/2sin^-1(x/3)-x/2sqrt(9-x^2)+sqrt(9-x^2)+cI=92sin1(x3)x29x2+9x2+c

Explanation:

We know that,

color(red)((1)sin^2x=(1-cos2x)/2)(1)sin2x=1cos2x2

color(blue)((2)intcosxdx=sinx+c)(2)cosxdx=sinx+c

color(violet)((3)intsinxdx=-cosx+c)(3)sinxdx=cosx+c

Here,

I=int(x^2-x)/sqrt(9-x^2)dxI=x2x9x2dx

Subst. x=3sinu=>dx=3cosudux=3sinudx=3cosudu

=>x^2=9sin^2u and sinu=x/3=>u=sin^-1(x/3)x2=9sin2uandsinu=x3u=sin1(x3)

So,

I=int(9sin^2u-3sinu)/sqrt(9-9sin^2u)xx3cosuduI=9sin2u3sinu99sin2u×3cosudu

=int(9sin^2u-3sinu)/(cancel(3cosu))xxcancel(3cosu)du

=9intsin^2udu-3intsinudu...tocolor(red)(Apply(1)

=9int(1-cos(2u))/2du-3intsinudu...toApplycolor(blue)((2)) andcolor(violet)((3))

=9/2[u-sin(2u)/2]-3(-cosu)+c

=9/4[2u-sin2u]+3cosu+c

Subst. back , sinu=x/3 and u=sin^-1(x/3)

I=9/4[2sin^-1(x/3)-2sinucosu]+3sqrt(1-sin^2u)+c

=9/4xx2[sin^-1 (x/3)-sinusqrt(1-sin^2u)]+3sqrt(1-x^2/9)+c

=9/2[sin^-1(x/3)-(x/3)sqrt(1-x^2/9)]+3sqrt(9-x^2)/3+c

=9/2sin^-1(x/3)-9/2xxx/3sqrt(9-x^2)/3+sqrt(9-x^2)+c

I=9/2sin^-1(x/3)-x/2sqrt(9-x^2)+sqrt(9-x^2)+c