We know that,
color(red)((1)sin^2x=(1-cos2x)/2)(1)sin2x=1−cos2x2
color(blue)((2)intcosxdx=sinx+c)(2)∫cosxdx=sinx+c
color(violet)((3)intsinxdx=-cosx+c)(3)∫sinxdx=−cosx+c
Here,
I=int(x^2-x)/sqrt(9-x^2)dxI=∫x2−x√9−x2dx
Subst. x=3sinu=>dx=3cosudux=3sinu⇒dx=3cosudu
=>x^2=9sin^2u and sinu=x/3=>u=sin^-1(x/3)⇒x2=9sin2uandsinu=x3⇒u=sin−1(x3)
So,
I=int(9sin^2u-3sinu)/sqrt(9-9sin^2u)xx3cosuduI=∫9sin2u−3sinu√9−9sin2u×3cosudu
=int(9sin^2u-3sinu)/(cancel(3cosu))xxcancel(3cosu)du
=9intsin^2udu-3intsinudu...tocolor(red)(Apply(1)
=9int(1-cos(2u))/2du-3intsinudu...toApplycolor(blue)((2)) andcolor(violet)((3))
=9/2[u-sin(2u)/2]-3(-cosu)+c
=9/4[2u-sin2u]+3cosu+c
Subst. back , sinu=x/3 and u=sin^-1(x/3)
I=9/4[2sin^-1(x/3)-2sinucosu]+3sqrt(1-sin^2u)+c
=9/4xx2[sin^-1 (x/3)-sinusqrt(1-sin^2u)]+3sqrt(1-x^2/9)+c
=9/2[sin^-1(x/3)-(x/3)sqrt(1-x^2/9)]+3sqrt(9-x^2)/3+c
=9/2sin^-1(x/3)-9/2xxx/3sqrt(9-x^2)/3+sqrt(9-x^2)+c
I=9/2sin^-1(x/3)-x/2sqrt(9-x^2)+sqrt(9-x^2)+c