How do you evaluate the integral int x^-3lnxx3lnx?

1 Answer
Jan 2, 2017

The answer is =-(2ln(∣x∣)+1)/(4x^2)+C=2ln(x)+14x2+C

Explanation:

We need intx^ndx=x^(n+1)/(n+1)+C (n!=-1)xndx=xn+1n+1+C(n1)

intu'v=uv-intuv'

We do an integration by parts

The integral is =intx^(-3)lnxdx

Let u'=x^-3, =>, u=-x^-2/2

v=lnx, =>, v'=1/x

Therefore,

intx^(-3)lnxdx=-1/(2x^2)*lnx-int-dx/(2x^3)

=-lnx/(2x^2)+intdx/(2x^3)

=-lnx/(2x^2)-1/2*1/(2x^2)+C

=-lnx/(2x^2)-1/(4x^2)+C

=-(2ln(∣x∣)+1)/(4x^2)+C