How do you find the antiderivative of int 1/(x^2(1+x^2)) dx?

2 Answers
Oct 16, 2016

Partial fraction expansion gives you two trivial integrals:

int1/(x^2(x^2 + 1))dx = int1/x^2dx - int1/(x^2 + 1)dx

Explanation:

Use partial fraction expansion:

1/(x^2(x^2 + 1)) = A/x + B/x^2 + (Cx +D)/(x^2 + 1)

1 = A(x(x^2 + 1)) + B(x^2 + 1) + (Cx +D)(x^2)

Let x = 0:

B = 1

1 - (x^2 + 1) = A(x(x^2 + 1)) + (Cx +D)(x^2)

Let x = 1:

-1 = A(1(1^2 + 1)) + (C + D)(1^2)

-1 = 2A + C + D

Let x = -1

1 - (-1^2 + 1) = A(-1(-1^2 + 1)) + (C-1 +D)(-1^2)

-1 = -2A - C + D

D = -1

A = C = 0

Check:

1/x^2 - 1/(x^2 + 1) =

1/x^2(x^2 + 1)/(x^2 + 1) - 1/(x^2 + 1)(x^2)/(x^2) =

(x^2 + 1)/(x^2(x^2 + 1)) - (x^2)/(x^2(x^2 + 1)) =

1/(x^2(x^2 + 1)) This checks.

int1/(x^2(x^2 + 1))dx = int1/x^2dx - int1/(x^2 + 1)dx

Oct 21, 2016

-1/x-arctanx+C

Explanation:

This method avoids partial fractions and uses a trig substitution.

I=int1/(x^2(1+x^2))dx

Let x=tantheta. This implies that dx=sec^2thetad theta. Thus:

I=intsec^2theta/(tan^2theta(1+tan^2theta))d theta

Since 1+tan^2theta=sec^2theta:

I=int1/tan^2thetad theta=intcot^2thetad theta

Note that cot^2theta=csc^2theta-1:

I=intcsc^2thetad theta-intd theta

These are common integrals:

I=-cottheta-theta+C

Note that tantheta=x, so cottheta=1/x and theta=arctanx.

I=-1/x-arctanx+C