Evaluate the integral int \ x/(cosx-1) \ dx ?
1 Answer
int \ x/(cosx-1) \ dx = xcot(x/2) - 2ln|sin(x/2)| + C
Explanation:
We seek:
I = int \ x/(cosx-1) \ dx ..... [A]
We can apply Integration By Parts, but prior to this, let us consider:
I_1 = int \ 1/(cosx-1) \ dx
For this we can use the tangent half angle identity:
cos alpha = (1-tan^2(alpha/2))/(1+tan^2(alpha/2))
Which gives us:
I_1 = int \ 1/((1-tan^2(x/2))/(1+tan^2(x/2))-1) \ dx
\ \ \ = int \ 1/((1-tan^2(x/2)- (1+tan^2(x/2)))/(1+tan^2(x/2))) \ dx
\ \ \ = int \ (1+tan^2(x/2))/( 1-tan^2(x/2) - 1-tan^2(x/2) ) \ dx
\ \ \ = int \ (1+tan^2(x/2))/( -2tan^2(x/2) ) \ dx
\ \ \ = int \ (sec^2(x/2))/( -2tan^2(x/2) ) \ dx
We can perform a substitution of the form:
u=tan(x/2) => (du)/dx = 1/2sec^2(x/2)
If we substitute into the integral, we get:
I_1 = int -1/u^2 \ du
\ \ \ = 1/u + C
And restoring the earlier substitution, we get:
I_1 = 1/tan(x/2) + C
\ \ \ = cot(x/2) + C
Now, let us return to the original integral [A], and apply Integration By Parts, using this result:
Let
{ (u,=x, => (du)/dx,=1), ((dv)/dx,=1/(cosx-1), => v,=cot(x/2) ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
Gives us
int \ (x)(1/(cosx-1)) \ dx = (x)(cot(x/2)) - int \ (cot(x/2))(1) \ dx
:. I = xcot(x/2) - int \ cot(x/2) \ dx + C
And now we can manipulate the second integral:
I_2 = int \ cot(x/2) \ dx
\ \ \ = int \ cos(x/2)/sin(x/2) \ dx
We can apply the substitution
u = sin(x/2) => (du)/dx = 1/2cos(x/2)
Substituting, we get:
I_2 = int \ (2)(1/2cos(x/2))/sin(x/2) \ dx
\ \ \ = int \ (2)(1/u) \ du
\ \ \ = 2ln|u|
And restoring the substitution we get:
I_2 = 2ln|sin(x/2)|
Then, combining our results we have:
I = xcot(x/2) - 2ln|sin(x/2)| + C