What is int (8x)/sqrt(16+x^2) dx8x16+x2dx?

1 Answer
Jun 15, 2016

8sqrt(16+x^2)+C.816+x2+C.

Explanation:

Let I=int(8x)/sqrt(16+x^2)dx.I=8x16+x2dx.

We use Substitution : 16+x^2=t^2.:16+x2=t2.

:. 2xdx=2tdt., or, xdx=tdt.

Therefore, I=int(8x)/sqrt(16+x^2)dx,=int(8t)/sqrtt^2dt=8intdt=8t=8sqrt(16+x^2)+C.

OR

We can use the Formula : int(f(x))^n*f'(x)dx=(f(x))^(n+1)/(n+1), n!=-1.

Take f(x)=(16+x^2), n=-1/2!=-1. Then, f'(x)=2x. Thus,
I=int(8x)/sqrt(16+x^2)dx=4int(16+x^2)^(-1/2)2xdx=4[(16+x^2)^{-1/2+1}]/(-1/2+1)=4{(16+x^2)^(1/2)}/(1/2)=8sqrt(16+x^2)+C, as before!