How do you integrate 7x2332 using trig substitutions?

1 Answer
Dec 4, 2017

(7x23)32dx

=74x37x23158x7x23+27756ln(x7+7x23)+C

Explanation:

(7x23)32dx

After using x=37secu and dx=37secutanudu transforms, this integral became,

[737(secu)23]3237secutanudu

=[3(secu)23]3237secutanudu

=[3(tanu)2]3237secutanudu

=[33(tanu)337secutanudu

=[97(tanu)4secudu

Now, I solved (tanu)4secudu integral,

(tanu)4secudu

=[(secu)21]2secudu

=(secu)5du2(secu)3du+secudu

After using reduction formula for (secu)ndu,

(secu)ndu=1n1(secu)n2tanu+n2n1(secu)n2du

(tanu)4secudu

=14(secu)3tanu+34(secu)3du2(secu)3du+secudu

=14(secu)3tanu54(secu)3du+secudu

=14(secu)3tanu58secutanu58secudu+secudu

=14(secu)3tanu58secutanu+38secudu

=14(secu)3tanu58secutanu+38ln(secu+tanu)+79C1

Hence,

=97(tanu)4secudu

=947(secu)3tanu-4587secutanu+2787ln(secu+tanu)+C1

After using x=37secu, secu=73x and tanu=7x233 inverse transformations, I found

(7x23)32dx

=947779x37x23-458773x7x23+2787ln(73x+7x233)+C1

=74x37x23-158x7x23+27756ln(x7+7x23)+C

Note: C=C1277112ln3