What is int ((arcsinx)^9) / (sqrt(1-x^2) dx(arcsinx)91x2dx?

1 Answer
May 29, 2018

color(blue)[int ((arcsinx)^9) / (sqrt(1-x^2)] dx=(arcsinx)^10/10+c](arcsinx)91x2dx=(arcsinx)1010+c

Explanation:

int ((arcsinx)^9) / (sqrt(1-x^2)] dx(arcsinx)91x2dx

lets suppose:

u=arcsinxu=arcsinx

du=1/sqrt(1-x^2)*dxdu=11x2dx

dx=sqrt(1-x^2)*dudx=1x2du

int ((arcsinx)^9) / (sqrt(1-x^2) dx]=int ((u)^9*sqrt(1-x^2))/ (sqrt(1-x^2)]*du(arcsinx)91x2dx=(u)91x21x2du

intu^9*du=u^10/10=(arcsinx)^10/10+cu9du=u1010=(arcsinx)1010+c