What is int ((arcsinx)^9) / (sqrt(1-x^2) dx∫(arcsinx)9√1−x2dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer James May 29, 2018 color(blue)[int ((arcsinx)^9) / (sqrt(1-x^2)] dx=(arcsinx)^10/10+c]∫(arcsinx)9√1−x2dx=(arcsinx)1010+c Explanation: int ((arcsinx)^9) / (sqrt(1-x^2)] dx∫(arcsinx)9√1−x2dx lets suppose: u=arcsinxu=arcsinx du=1/sqrt(1-x^2)*dxdu=1√1−x2⋅dx dx=sqrt(1-x^2)*dudx=√1−x2⋅du int ((arcsinx)^9) / (sqrt(1-x^2) dx]=int ((u)^9*sqrt(1-x^2))/ (sqrt(1-x^2)]*du∫(arcsinx)9√1−x2dx=∫(u)9⋅√1−x2√1−x2⋅du intu^9*du=u^10/10=(arcsinx)^10/10+c∫u9⋅du=u1010=(arcsinx)1010+c Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx∫1x2⋅√x2−9dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx∫x3√x2+9dx ? How do you find the integral intx^3*sqrt(9-x^2)dx∫x3⋅√9−x2dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx∫x3√16−x2dx ? How do you find the integral intsqrt(x^2-1)/xdx∫√x2−1xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx∫√x2−9x3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx∫x√x2+x+1dx ? How do you find the integral intdt/(sqrt(t^2-6t+13))∫dt√t2−6t+13 ? How do you find the integral intx*sqrt(1-x^4)dx∫x⋅√1−x4dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 2632 views around the world You can reuse this answer Creative Commons License