How do you integrate xx2+9dx?

2 Answers
Sep 17, 2015

substitute x = 3tanθ
(x2+9)=9tan2θ+9= 9sec2θ
(x2+9)12 = 3secθ
dx=3sec2θdθ
substiuting
3tanθ3secθ 3sec2θdθ
=3 secθtanθdθ
=3secθ+c
secθ=(1+tan2θ)=(1+(x3)2)
9+x23
=>3secθ=9+x2
the final answer is 9+x2+c
it can be done in other way
xisderrivativeofx22
it can be wriiten as dx22
so xx2+9dx bexmes 121x2+9d(x2)
=12(2x2+9)+c
=x2+9+c

Sep 18, 2015

x2+9+C

Explanation:

substitution:

x2+9=t2xdx=dtxdx=dt2

xx2+9dx=dt21t=12t12dt=

=12t1212+C=t+C=x2+9+C