How do you evaluate int x/sqrt(1+x^2)∫x√1+x2 from [-sqrt2,0][−√2,0]? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer sjc Mar 26, 2018 1-sqrt31−√3 Explanation: int_-sqrt2^0x/sqrt(1+x^2)dx∫0−√2x√1+x2dx int_-sqrt2^0x(1+x^2)^(-1/2)dx∫0−√2x(1+x2)−12dx by inspection =[(1+x^2)^(1/2)]_-sqrt2^0=[(1+x2)12]0−√2 =[(1+x^2)^(1/2)]^0-[(1+x^2)^(1/2)]_-sqrt2=[(1+x2)12]0−[(1+x2)12]−√2 =1-(1+2)^(1/2)=1−(1+2)12 =1-sqrt3=1−√3 Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx∫1x2⋅√x2−9dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx∫x3√x2+9dx ? How do you find the integral intx^3*sqrt(9-x^2)dx∫x3⋅√9−x2dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx∫x3√16−x2dx ? How do you find the integral intsqrt(x^2-1)/xdx∫√x2−1xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx∫√x2−9x3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx∫x√x2+x+1dx ? How do you find the integral intdt/(sqrt(t^2-6t+13))∫dt√t2−6t+13 ? How do you find the integral intx*sqrt(1-x^4)dx∫x⋅√1−x4dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1587 views around the world You can reuse this answer Creative Commons License