How do you integrate int x^3sqrt(16-x^2)x316x2 by trigonometric substitution?

2 Answers
May 5, 2018

intx^3sqrt(16-x^2)dx=-16/3(16-x^2)^(3/2)+1/5(16-x^2)^(5/2)+cx316x2dx=163(16x2)32+15(16x2)52+c

Explanation:

Let x=4sintx=4sint, then sqrt(16-x^2)=4cost16x2=4cost and dx=4costdtdx=4costdt

and intx^3sqrt(16-x^2)dxx316x2dx

= int64sin^3t*4cost*4costdt64sin3t4cost4costdt

= 1024intsin^3tcos^2tdt1024sin3tcos2tdt

= 1024int(1-cos^2t)cos^2tsintdt1024(1cos2t)cos2tsintdt

= 1024int(cos^2t-cos^4t)sintdt1024(cos2tcos4t)sintdt

Let cost=ucost=u then du=-sintdtdu=sintdt and our integral becomes

-1024int(u^2-u^4)du1024(u2u4)du

= -1024(u^3/3-u^5/5)1024(u33u55)

i.e. 1024(-1/3cos^3t+1/5cos^5t)1024(13cos3t+15cos5t) (substituting u=costu=cost)

and as cost=1/4sqrt(16-x^2)cost=1416x2, our integral becomes

1024(-1/3*1/64(16-x^2)^(3/2)+1/5*1/1024(16-x^2)^(5/2))+c1024(13164(16x2)32+1511024(16x2)52)+c

= -16/3(16-x^2)^(3/2)+1/5(16-x^2)^(5/2)+c163(16x2)32+15(16x2)52+c

May 5, 2018

Let,sqrt(16-x^2)=t=>16-x^2=t^2=>xdx=-tdt16x2=t16x2=t2xdx=tdt
I=int(16-t^2)t(-t)dt=int(t^4-16t^2)dt=t^5/5-(16t^3)/3+cI=(16t2)t(t)dt=(t416t2)dt=t5516t33+c
Substituting, t=sqrt(16-x^2)t=16x2
I=(sqrt(16-x^2))^5/5-(16(sqrt(16-x^2))^3)/3+cI=(16x2)5516(16x2)33+c

Explanation:

Here,

I=intx^3sqrt(16-x^2)dxI=x316x2dx

Let, x=4sinu=>dx=4cosudux=4sinudx=4cosudu

and sinu=x/4=>cosu=sqrt(1-sin^2u)=sqrt(1-x^2/16andsinu=x4cosu=1sin2u=1x216

=>cosu=sqrt(16-x^2)/4...to(A)

I=int64sin^3usqrt(16-16sin^2u)xx4cosudu

=256intsin^3uxx4cosuxxcosudu

I=1024intsin^3ucos^2udu

I=4^5int(1-cos^2u)cos^2uxxsinudu

=4^5[intcos^2usinudu-intcos^4usinudu]

=4^5[-int(cosu)^2(-sinu)du+int(cosu)^4(-sinu)du]

=4^5[-(cosu)^3/3+(cosu)^5/5]+c

=4^5[(cosu)^5/5-(cosu)^3/3]+c...tofrom (A)

=4^5[(sqrt(16-x^2))^5/(5xx4^5)-(sqrt(16-x^2))^3/(3xx4^3)]+c

=(sqrt(16-x^2))^5/5-4^2xx(sqrt(16-x^2))^3/3+c

I=(sqrt(16-x^2))^5/5-(16(sqrt(16-x^2))^3)/3+c