Let x=4sintx=4sint, then sqrt(16-x^2)=4cost√16−x2=4cost and dx=4costdtdx=4costdt
and intx^3sqrt(16-x^2)dx∫x3√16−x2dx
= int64sin^3t*4cost*4costdt∫64sin3t⋅4cost⋅4costdt
= 1024intsin^3tcos^2tdt1024∫sin3tcos2tdt
= 1024int(1-cos^2t)cos^2tsintdt1024∫(1−cos2t)cos2tsintdt
= 1024int(cos^2t-cos^4t)sintdt1024∫(cos2t−cos4t)sintdt
Let cost=ucost=u then du=-sintdtdu=−sintdt and our integral becomes
-1024int(u^2-u^4)du−1024∫(u2−u4)du
= -1024(u^3/3-u^5/5)−1024(u33−u55)
i.e. 1024(-1/3cos^3t+1/5cos^5t)1024(−13cos3t+15cos5t) (substituting u=costu=cost)
and as cost=1/4sqrt(16-x^2)cost=14√16−x2, our integral becomes
1024(-1/3*1/64(16-x^2)^(3/2)+1/5*1/1024(16-x^2)^(5/2))+c1024(−13⋅164(16−x2)32+15⋅11024(16−x2)52)+c
= -16/3(16-x^2)^(3/2)+1/5(16-x^2)^(5/2)+c−163(16−x2)32+15(16−x2)52+c