How do you integrate int x /sqrt(1 - x^2) dx using trigonometric substitution?

2 Answers
Dec 21, 2016

-(sqrt(1-x^2))+C

Explanation:

Using

sin^2x+cos^2x=1:.sin^2x=1-cos^2x

intx/(sqrt(1-x^2))dx

substitue" "x=sinu=>dx=cosudu

we have:" "intx/(sqrt(1-x^2))dx=int(sinu)/(sqrt(1-sin^2u))xx(cosu)du

" "=int(sinu)/(cancelcosu)xxcancel((cosu))du

=intsinudu=-cosu+C

=-(sqrt(1-x^2))+C

this can also be integrated by inspection

intx/(sqrt(1-x^2))dx=intx(1-x^2)^(-1/2)dx

we note that a function of the derivative is outside the bracket ,so:

d/(dx)((1-x^2)^(1/2))=1/2xx-2x(1-x)^(-1/2)=-x(1-x^2)^(-1/2)

result follows

Dec 21, 2016

int x/sqrt(1-x^2)dx = -sqrt(1-x^2)+C

Explanation:

The integrand is defined only for x in (-1,1) so we can substitute x=sint, dx=costdt with t in [-pi/2,pi/2]

int x/sqrt(1-x^2)dx = int (sintcost)/sqrt(1-sin^2t)dt=int (sintcost)/sqrt(cos^2t)dt = int (sintcost)/costdt= int sintdt=-cost+C

In the same interval,

cost= sqrt(1-x^2)

So that:

int x/sqrt(1-x^2)dx = -sqrt(1-x^2)+C