How do you integrate #int sqrt(1-7x^2)# using trig substitutions?
1 Answer
# int \ sqrt(1-7x^2) \ dx = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C #
Explanation:
Let:
# I = int \ sqrt(1-7x^2) \ dx #
We would aim to get an expression involving
# I = int \ sqrt(1-(sqrt(7)x)^2) \ dx #
If we compare to the trig identity
# sin theta = sqrt(7)x => theta = arcsin(sqrt(7)x) #
and,#cos theta (d theta)/dx = sqrt(7) #
Substituting into our integral gives:
# I = int \ sqrt(1-sin^2 theta) \ (cos theta/sqrt(7)) \ d theta #
# \ \ = 1/sqrt(7) \ int \ sqrt(cos^2 theta) cos theta \ d theta #
# \ \ = 1/sqrt(7) \ int \ cos^2 theta \ d theta #
Now we use the identity:
# cos2theta -= cos^2theta - sin^2 theta #
# " " = cos^2theta - (1-cos^2) theta #
# " " = 2cos^2theta - 1#
Which gives us:
# I = 1/sqrt(7) \ int \ cos^2 theta \ d theta #
# \ \ = 1/sqrt(7) \ int \ 1/2(1+cos2theta) \ d theta #
# \ \ = 1/(2sqrt(7)) \ int \ 1+cos2theta \ d theta #
# \ \ = 1/(2sqrt(7)) { theta + 1/2sin2theta } +C #
# \ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))sin2theta +C #
# \ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))(2sinthetacostheta) +C #
And if we use:
# costheta = sqrt(1-sin^2theta) #
then we can restore the substitution and get:
# I = 1/(2sqrt(7)) theta + 1/2sinthetasqrt(1-sin^2theta) +C #
# \ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/(2sqrt(7))(sqrt(7)x)sqrt(1-(sqrt(7)x^2)) +C #
# \ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C #