How do you integrate int sqrt(1-7x^2) using trig substitutions?

1 Answer
Apr 2, 2017

int \ sqrt(1-7x^2) \ dx = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C

Explanation:

Let:

I = int \ sqrt(1-7x^2) \ dx

We would aim to get an expression involving a^2-x^2 prior to substitution so we can rewrite as:

I = int \ sqrt(1-(sqrt(7)x)^2) \ dx

If we compare to the trig identity 1-sin^2theta -= cos^2theta then it may be worth trying the substitution:

sin theta = sqrt(7)x => theta = arcsin(sqrt(7)x)
and, cos theta (d theta)/dx = sqrt(7)

Substituting into our integral gives:

I = int \ sqrt(1-sin^2 theta) \ (cos theta/sqrt(7)) \ d theta
\ \ = 1/sqrt(7) \ int \ sqrt(cos^2 theta) cos theta \ d theta
\ \ = 1/sqrt(7) \ int \ cos^2 theta \ d theta

Now we use the identity:

cos2theta -= cos^2theta - sin^2 theta
" " = cos^2theta - (1-cos^2) theta
" " = 2cos^2theta - 1

Which gives us:

I = 1/sqrt(7) \ int \ cos^2 theta \ d theta
\ \ = 1/sqrt(7) \ int \ 1/2(1+cos2theta) \ d theta
\ \ = 1/(2sqrt(7)) \ int \ 1+cos2theta \ d theta
\ \ = 1/(2sqrt(7)) { theta + 1/2sin2theta } +C
\ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))sin2theta +C
\ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))(2sinthetacostheta) +C

And if we use:

costheta = sqrt(1-sin^2theta)

then we can restore the substitution and get:

I = 1/(2sqrt(7)) theta + 1/2sinthetasqrt(1-sin^2theta) +C
\ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/(2sqrt(7))(sqrt(7)x)sqrt(1-(sqrt(7)x^2)) +C
\ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C