How do you integrate int sqrt(1-7x^2) using trig substitutions?
1 Answer
int \ sqrt(1-7x^2) \ dx = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C
Explanation:
Let:
I = int \ sqrt(1-7x^2) \ dx
We would aim to get an expression involving
I = int \ sqrt(1-(sqrt(7)x)^2) \ dx
If we compare to the trig identity
sin theta = sqrt(7)x => theta = arcsin(sqrt(7)x)
and,cos theta (d theta)/dx = sqrt(7)
Substituting into our integral gives:
I = int \ sqrt(1-sin^2 theta) \ (cos theta/sqrt(7)) \ d theta
\ \ = 1/sqrt(7) \ int \ sqrt(cos^2 theta) cos theta \ d theta
\ \ = 1/sqrt(7) \ int \ cos^2 theta \ d theta
Now we use the identity:
cos2theta -= cos^2theta - sin^2 theta
" " = cos^2theta - (1-cos^2) theta
" " = 2cos^2theta - 1
Which gives us:
I = 1/sqrt(7) \ int \ cos^2 theta \ d theta
\ \ = 1/sqrt(7) \ int \ 1/2(1+cos2theta) \ d theta
\ \ = 1/(2sqrt(7)) \ int \ 1+cos2theta \ d theta
\ \ = 1/(2sqrt(7)) { theta + 1/2sin2theta } +C
\ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))sin2theta +C
\ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))(2sinthetacostheta) +C
And if we use:
costheta = sqrt(1-sin^2theta)
then we can restore the substitution and get:
I = 1/(2sqrt(7)) theta + 1/2sinthetasqrt(1-sin^2theta) +C
\ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/(2sqrt(7))(sqrt(7)x)sqrt(1-(sqrt(7)x^2)) +C
\ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C